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Abstract Two-dimensional numerical simulations have been performed using a finite volume
method that employs unstructured grids with cell-wise local refinement and an interface-capturing
scheme to predict the shape of the free surface, thus simulating the surface wave that is created in a
mold due to the flow from the submerged entry nozzle (SEN). Simulation has been done for 1:6.25
aspect ratio of the mold having a height of 2m with parallel rectangular ports as well as 158
upward and downward ports. It has been found that for low inlet velocity of the SEN (,1m/s) the
maximum wave amplitude of the surface remains below 12mm and no outside air is entrapped by
the wave to form a bubble. However, for high inlet velocity (2m/s or more) there is considerable
fluctuations on the free surface and the maximum wave amplitude shoot up beyond 70mm at the
start up and slowly falls to about 30mm entrapping air bubbles from the surroundings. The
movement of the air bubble within the mold and its rise to the free surface where it subsequently
collapses has been captured well in the numerical simulation. The overall shape of the free surface
matches well, excepting the initial transience, with that of the experimentally observed free surface,
although the free surface never attains a perfect steady shape neither in the experiment nor in the
numerical simulation due to its continuous oscillation and breaking.
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Nomenclature
c ¼ volume fraction of the fluid
k ¼ turbulent kinetic energy
p ¼ pressure
t ¼ time
U ¼ mean velocity
x ¼ coordinate for measure of distance
r ¼ density of the fluid
m ¼ coefficient of viscosity
n ¼ kinematic viscosity
uiuj ¼ average turbulent stress

1 ¼ rate of dissipation of turbulent
kinetic energy

s ¼ surface tension coefficient
f ¼ either k or 1

Subscripts
i, j, k ¼ three Cartesian coordinate directions

x, y and z
1 ¼ Fluid 1 (liquid)
2 ¼ Fluid 2 (gas)
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Introduction
In recent times, steel makers are aiming for high quality steel with improved
productivity. As a result the casting speed of the liquid steel has to be high
which brings several other problems in the mold leading to loss of quality. This
conflicting requirement has brought in the need to study surface wave or
computation of free surface in the mold. In a continuous slab caster, a higher
casting speed leads to lot of fluctuations in the free surface of the liquid level in
the mold. This fluctuation in the free surface with the association of frequent
vortex entraps the slag and the surrounding air, which can spoil the quality of
the steel. Therefore in recent times, lot of attention and effort has been directed
towards the study of the free surface in a mold and its measurement. Effort has
been made to minimize the maximum amplitude of the surface wave by putting
electromagnetic field around the free surface of the mold, which is shown to be
an expensive arrangement. Lot of experimental and theoretical works has been
reported by Andrzejewski et al. (1992), Ferritti and Podrini (1985), Gupta and
Lahiri (1992, 1993), Gupta et al. (1991), Matsuhita et al. (1988), Nakato et al.
(1984), Qinglin (1993), Robertson et al. (1986), Szekely and Yadoya (1972) and
Thomas et al. (1990) to assess the flow pattern in the mold but no effort has
been made to arrive at a numerical prediction of surface wave fluctuation due
to the presence of the flow field in the mold, in the light of present numerical
computation. In the past, researchers have put attention to compute the flow
field in the mold without trying to compute the shape of the free surface, simply
because such computational techniques were not available. Most of the work
with free surface was experimental where actual measurement of the surface
wave can be found in the work of Andrzejewski et al. (1992), Gupta and Lahiri
(1993) and Matsuhita et al. (1988). It should be noted that accurate measurement
of the surface wave needs high speed camera and image analyzer and an
elaborate experimental setup which can be very expensive. But with the
present numerical technique prediction of surface wave can be accurate and
this can be simulated for any complex geometrical shape due to the use of
unstructured grid.

Panaras et al. (1998) have used a volume of fluid (VOF) technique to predict
the surface wave in a mold due to submitted entry nozzle (SEN) and they have
suggested a criterion to adopt maximum velocity so that instability can be
avoided on the free surface. Anagnostopoulos and Bergeles (1999) and
Theodorrakakos and Bergeles (1998) in their work have computed the free
surface of two fluids (water and oil) in a mold by the VOFmethod but they have
not shown the entrapment of air bubble or the entrapment of the lighter fluid in
the heavier one, simply because the treatment of VOF method in their study is
not capable of handling overturning shapes of the free surface. Moreover, they
have not solved the species continuity equation (to represent the volume
fraction of a desired fluid) and have not incorporated the forces due to surface
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tension, which can cause the free surface to change a lot, in their modeling.
Such effects are taken into account in the present numerical investigation.

Literature survey shows that – to our knowledge – there are no published
results on numerical simulations of surface wave in a mold created due to the
flow from the SEN having a direct comparison with experimental findings. The
reason is that methods, which allow simulations of two-fluid flow with
complicated free-surface pattern have only recently emerged (Lafaurie et al.,
1994; Muzaferija and Peric, 1999; Ubbink, 1997. One such method developed by
Muzaferija and Peric (1999) has been successfully used in this study to predict
the surface wave, the entrapment of bubbles through the free surface and their
subsequent movement in the mold following further collapse and coalescence
of the bubbles.

Problem description
The experimental setup is shown schematically in Figure 1 and symmetry has
been exploited to show half of the setup. The SEN as well as the mold are made
from Perspex glass. The diameter of the SEN is 25mm and the wall thickness is
10mm. The port opening is 33mm and the submergence depth is kept at
125mm from the free surface, which can be visualized from Figure 1. The
width of the mold is 500mm and thickness 80mm, which keeps the aspect ratio
of the mold at 1:6.25. The height of the mold is 2m. Initially water is filled in the
mold up to a level so that the submergence depth of the SEN is 125mm. Then
water is allowed to flow into the SEN from a reservoir (called tundish) through
a stopper rod arrangement and the reservoir is fed in by water through a pump.

Figure 1.
Schematic view of the
SEN in the mold, all
shaded lines represent
walls, all dimensions in
millimeter
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The level in the reservoir is kept constant by adjusting the flow rate into it.
Slowly the flow rate of water into the SEN and flow rate out of the mold
through the outlets at the bottom of the mold settles to a steady value. There
are five openings at the bottom of the mold, which are connected through outlet
pipes of 10mm diameter to a large buffer. In the simulation we use two full
outlets and one half outlet in order to force symmetry. The half outlet is 5mm
in width and is created near the symmetry plane. All other portion at the
bottom of the mold is a solid wall. In Figure 1, the arrows represent the outlets
and the rest of the portions are wall.

The objective is to compute the free surface for a particular submergence
depth, with a specified inlet velocity to the SEN for which case an exact
snapshot from the experiment can be taken and a possible comparison with
the numerical simulation can be made. There can be variations in the port
angle of the SEN. In the present study, we have taken a parallel port (08),
SEN as well as 158 up and 158 downward port SEN but results for only
parallel port SEN will be discussed because the inclined port results are not
much different from the parallel port result. To start with, the level in the
mold is such that the submergence depth is 125mm. But when the pump
starts the level changes too fast and adjustments in the flow rate are
required to keep the submergence depth at a specified value. This operation
takes time and this is the reason why the initial transience could not be
matched with the experimental findings. In a mathematical simulation the
initial level of liquid can be specified at any value and the inlet and outlet
flows can be specified to a desired value; so a smooth transient can be
simulated but unfortunately this could not be controlled in the actual
experiment for which the initial transience could not be matched with that of
the experiment. However, the surface wave is repetitive in nature and
barring the initial transience a wave pattern can be found out with time,
which can be favorably compared with the numerical simulation.

From experimental evidence it has been found that there is no significant
change in the wave amplitude in the direction of the narrow sidewall. So in
order to keep the computational time low, a two-dimensional simulation has
been undertaken to simulate the free surface in the mold. Normally a simulation
of free surface will require very fine grid near the free surface and a
three-dimensional computation could have taken a huge amount of control
volumes (CVs) (and hence time) as compared to the same resolution that is used
in a two-dimensional simulation (Figure 2).

Governing equations
The finite volume method for incompressible viscous flows with free surface is
described briefly in detail by Muzaferija and Peric (1999). The starting point are
the conservation equations for mass, momentum and scalar quantities (e.g.
energy or chemical species) in their differential form.
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Figure 2.
Arrangement of control
volumes in the
SEN and mold
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Turbulent kinetic energy

DðrkÞ

Dt
¼ Dk þ rP 2 r1 ð3Þ

Rate of dissipation of k

Dðr1Þ

Dt
¼ D1 þ C1rP

1

k
2 C2

r12

k
ð4Þ

where

uiuj ¼
2

3
kdij 2 nt

›Ui

›xj
þ
›Uj

›xi

� �
; nt ¼

Cmk
2

1

Df ¼
›

›xj
mþ

mt

sf

� �
›f

›xj

� �
; P ¼ 2uiuj

›Ui

›xj

Constants used in the k-1 model are:

C1 ¼ 1:44; C2 ¼ 1:92; sc ¼ 1:0

sk ¼ 1:0; s1 ¼ 1:3; Cm ¼ 0:09

A single momentum equation (equation (2)) is solved throughout the domain,
and the resulting velocity field is shared among the phases. The momentum
equation, shown in equation (2), is dependent on the volume fractions of all
phases through the properties r and m.

Surface tension and interface capturing
Interface-capturing method and high-resolution interface capturing (HRIC)
scheme (Muzaferija and Peric, 1999) have been used to simulate the free-surface
effects. In addition to the conservation equations for mass and momentum, a
transport equation for void fraction of the liquid phase c has been introduced:

›c

›t
þ U ·7c ¼ 0 ð5Þ

The grid extends to both liquid and gas phases; the void fraction c is set equal
to 1 for CVs filled by liquid and 0 for CVs filled by gas. Both fluids are treated
as a single effective fluid whose properties vary in space according to the
volume fraction of each phase, i.e.:

r ¼ r1cþ r2ð12 cÞ; m ¼ m1cþ m2ð12 cÞ ð6Þ

where subscripts 1 and 2 denote the two fluids (e.g. liquid and gas).
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The effects of surface tension at the interface between two fluids are taken
into account through a body force as a function of the volume fraction c, which
is achieved by introducing the continuum surface force (CSF) model (Brackbill
et al., 1992). The CSF model uses the smoothed field of c to define a unit vector
normal to the interface with the help of the gradient vector of c; the divergence
of this unit vector defines the curvature of the interface, k. The surface tension
force per unit volume (F in equation (2)) and the curvature can thus be
expressed as:

Fs ¼ s
rk7c

1
2 ðr1 þ r2Þ

k ¼ 27 ·
7c

j7cj

� �
ð7Þ

where s is the surface tension coefficient and r is the volume averaged density
computed from equation (6). Equation (7) shows that the surface tension source
term for a cell is proportional to the average density in the cell.

Air bubble model
When a bubble is entrapped in the liquid it experiences three kinds of forces on
it apart from its own weight. One is the surface tension force at the interface,
the second one is the viscous force on the surface as well as everywhere inside
the bubble and the third is the surrounding pressure force on it. Owing to
incorporation of a continuum surface force model as per equation (2) we take
care of the viscous force and the surface tension force acting on any cell at any
moment. The pressure gradient force is always present as it is imbedded in the
momentum equation (2). So inherently the momentum equation has all the
required components in it to describe the bubble dynamics when we
incorporate a continuum surface force model. So separate equations describing
bubble physics and its movement are not required as it is already imbedded in
equation (2). The entrapment of a bubble is activated when the surface
overturns and intersects itself entrapping the surrounding air into the liquid.
No separate activation mechanism is required in the numerical model as the
velocity field is computed for a single fluid with varying local properties. If a
bubble is present then the cells will have a value of c ¼ 0 and the boundary of
the bubble will have a value of c lying between 0 and 1 and the physical
properties of the local fluid will be computed according to equation (6) for all
those cells having a value of c between 0 and 1. Velocity is computed
everywhere and the velocity of the interface is also computed time to time. So
the movement of the interface or the bubble can be tracked with time. The
present model can therefore describe the entrapment of air bubble in the liquid
and its movement in the liquid as well as its coalescence or fragmentation.

Boundary conditions
The set of differential equations (1)-(5) have been solved with a set of realistic
boundary conditions. The inlet is prescribed as a known boundary condition
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where the velocity normal to the boundary has been prescribed to a pre-defined
value of 3.0m/s for the experiment of Gupta and Lahiri so that the average port
exit velocity is of the order of 1.94m/s for which the experiment was conducted.
In our present experiment, the inlet velocity is set to 2m/s (or 0.84m/s for low
velocity case) where we have done the study on bubble entrapment and its
movement. The turbulence intensity is set to 2 per cent at the inlet from which
the inlet values of k and 1 could be specified (for a detail specification of this,
see Jha and Dash (2002)). The outlet is given a zero gradient condition for all the
variables. The wall is specified with a equilibrium log law wall function for the
turbulent quantities from where k and 1 are computed from the wall functions
( Jha Pradeep and Dash Sukanta, 2002). The surface open to atmosphere at the
top of the domain is given a pressure boundary condition where the pressure is
set to be atmospheric. At the symmetry plane, zero gradient conditions in a
direction normal to the symmetry plane for all the variables are used. At the
wall zero gradient condition for the volume fraction, c has been used because
the quantity c, cannot diffuse into the wall. With all these set of boundary
conditions one initial condition for all the variables is needed to start the
solution.

Initial condition
At time t ¼ 0 all velocity components are set to 0, except the value at the inlet
where the normal velocity into the domain is set to a prescribed value. All the
turbulent quantities are initialized to zero everywhere in the domain except at
the inlet where they are given a pre-defined value of 2 per cent intensity. At the
inlet c is set to zero (for air) as we are solving for water as the primary phase
and air as the secondary phase. Up to the initial water level in the solution
domain, the value of c is set to be 1 and else where the value of c is kept at 0
signifying that the rest of the domain is filled with air to start with.

Properties of the fluids used in the simulation
In the numerical simulation only two fluids, water and air, are used. The
properties of the two fluids taken for the simulation are as shown in Table I.

Numerical solution methodology
The solution domain is subdivided into a finite number of non-overlapping
CVs: in the center of each CV lies the computational point at which the known

Property Water Air

r 988.3 kg/m3 1.225 kg/m3

s 0.073 N/m –
m 0.001013 Pa s 1.8£ 1025 Pa s Table I.
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quantities are specified and the unknown variables are to be computed. Local
refinement was used to achieve finer resolution in regions of rapid change of
the variables, as shown in Figure 2. The CVs are treated as polyhedra and can
have an arbitrary number of neighbors (unstructured grids).

Equations (1)-(5) are applied to each CV and then discretized, leading to one
algebraic equation per CV in which variables from immediate neighbors also
feature. All integrals are approximated using midpoint rule, i.e. the function to
be integrated is evaluated at the center of the integration domain and
multiplied by the area, volume or time interval over which the integration takes
place. In order to evaluate the function at the center of the integration domain,
one needs to introduce further approximations: interpolation and
differentiation. In space, linear interpolation is used, while in time either
linear or quadratic shape functions are used. The diffusive fluxes require that
the derivatives in the direction normal to CV faces be computed at each cell-face
center; these are obtained from linear shape functions with the help of
least-squares method or Gauss-theorem. The integration in time is fully implicit
(first-order Euler implicit method). The spatial integration is also of either first
or second order, depending on the approximation of convected variable in
convective fluxes (upwind or central differencing, or a blend of the two). In
the present computation first-order up winding scheme was adopted for the
convective fluxes with a blending factor of 0.5. In order to keep the
computational molecule limited to cell center node and centers of nearest
neighbor cells, the deferred-correction approach is used: low-order
approximations which use only nearest neighbors are used to construct the
coefficient matrix, and the difference between the desired approximation and
the low-order one is computed explicitly from the values obtained in the
previous iteration and added to the source term on the right-hand side of the
equation. More details on individual steps in the discretization procedure can
be found in Muzaferija and Peric (1999).

In order to calculate the pressure field and to couple it properly to the
velocity field, a pressure-correction method of SIMPLE-type (Patankar and
Spalding, 1972) is used. Velocities computed from momentum equations using
pressure from previous iteration step are corrected to enforce mass
conservation, and the correction to cell-face velocity is proportional to the
gradient of pressure correction, leading to a Poisson-type pressure-correction
equation. Turbulence is taken into account by solving two additional transport
equations for turbulent kinetic energy k and its dissipation rate 1 and adding
an eddy viscosity (computed with help of these two quantities) to the molecular
viscosity. When solving equation (5), a special interpolation method is used to
compute the cell-face value of the volume fraction c (HRIC-scheme, Muzaferija
and Peric, 1999), which is designed to keep the interface sharp (i.e. avoid
spreading due to numerical diffusion) and to maintain c bounded (i.e. c is not
allowed to become less than zero or greater than unity). This is achieved by
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blending the upwind and downwind approximations, with blending factor
being a function of the local profile of c, the orientation of interface relative to
cell-face, and the local Courant number. The following equations show how the
cell-face value of volume fraction c is computed at the cell-face j according to
the HRIC scheme.

cj ¼ c**j ðcD 2 cU Þ þ cU where c**j ¼ c*j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ðuÞ

p
þ cC

�
12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ðuÞ

p 	
and u

represents the angle between the normal to the interface (found out by the
gradient vector of c) and the normal to cell-face (Figure 3).

c*j ¼

cj if Co , 0

cC þ ðcj 2 cCÞ
0:72Co
0:720:3 if 0:3 # Co , 0:7

cC if 0:7 # Co

8>><
>>:

where the local Courant number is Co ¼ v · nSjdt=dVc (Sj is the surface area at j
and dVC is the volume of the cell C.

cj ¼

cC if cC , 0

2cC if 0 # cC # 0:5

1 if 0:5 # cC # 0:5

cC if 1 # cC

8>>>><
>>>>:

More details on the method are available in Muzaferija and Peric (1999). It is
implemented in the commercial code (Comet User Manual, n.d.), which has been
used in this study.

Figure 3.
On the computation of

cell-face volume fraction
at face j
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Time step used for the integration of the equation was 0.00005 s at the start of
the solution and later on it was slowly increased to 0.0001 s and then decreased
to 0.00002 s when the wave was about to break and bubbles started to be
entrapped in the liquid. About 2-3 iterations per time step was required for a
converged solution to be achieved at each time step. The cells at the interface
had a maximum size of 1.85£ 1.85mm, which could capture the interface very
sharp. A grid independency test on this will be discussed later in the text. Cell
sizes near the port exit are kept smaller because in this region there will be
considerable change in the velocity as the flow would swell into the caster.
Once the flow comes into the mold there will be a recirculation zone on the
south side of the port and another on the north of the port. Cell size down the
port will not affect the free surface because that will be always covered with
water. Whereas the cells located on the north side of the port may experience
the presence of a bubble so the cells on the north of the port are to be made very
fine to capture the free surface. The initial level of water is kept at the level of
the inlet port and around that zone in the mold the cells are made very fine
(which can be seen to very small in Figure 2(a) and (b). Again away from the
interface there will be only air and the velocity change will not be very high so
the cells can be made again coarser there which can be seen in Figure 2(a)
and (b).

Results and discussions
The CVs employed in the simulation of free surface are shown in Figure 2. In
Figure 2(a) (right side figure), the actual size of the SEN and the mold is shown.
The blown up view of the upper dotted portion is shown in Figure 2(b) (left
hand side picture). In the upper portion of the mold the grid has to be very fine
and locally refined so that the free surface can be captured well. The initial
location of the free surface is known a priori and hence local refinement in cells
is done around this location (50mm up and down around the initial level is
refined). The minimum cell size is about 1.85mm in that location for all the
computations with an inlet velocity of 2.0m/s. The upper part of the mold is
filled with air and the local velocity is not expected to change there by a great
amount, hence the grid size is kept large in this zone. A minimum cell size of
1.85 £ 1.85mm was found to produce grid independent solution for the free
surface and bubble entrapment. Grid refinements were done near the free
surface because it is expected that the value of volume fraction, c, can change
significantly here; so a finer grid can capture the free surface very sharp.
Grids were also refined near the outlet to capture the exit velocity properly.
Table II shows the effect of grid refinement on the appearance of the first wave
break up.

Initially a higher time step could be used but when the wave breaks there is a
need for small time step so that the free surface can be properly captured along
with the entrapment of the air bubbles.

HFF
14,5

616



Low inlet velocity
A simulation with an inlet velocity of 0.84m/s was performed for both parallel
port and 158 downward port SEN. The resulting surface waves (free surface)
for a parallel port SEN is shown in Figure 4(a). Figure 4(b) shows the
experimental snapshot for the exact case. The surface waves created in a 158
downward port are not much different from the waves created due to a parallel
port. So we intend not to discuss the case of 158 downward port here. In
Figure 4(a), the free surface is plotted starting from t ¼ 1 to 6 s. It can be read
from the figure (from the vertical millimeter scale attached to the figure) that
the maximum amplitude (vertical distance between the crest and trough of the
wave) Amax, of the wave is limited to about 9-10mm.The scale put at the top of
the figure helps to read the location of the wave in the mold. The left hand side
of the nozzle wall is located at 22.5mm from x ¼ 0 line while the narrow side
wall is located at 250mm from x ¼ 0. After 1 s the free surface almost attains a
quasi steady state without much variation in the maximum amplitude. The
shape of the free surface has been photographed from the experiment and the
snapshot is shown in Figure 4(b) starting from t¼1 to 6 s. It can be observed
that the free surface computed from the present method matches well with that
of the experiment, at least qualitatively.

It can be clearly visualized from Figure 4(a) and (b) that there is no over
turning in the surface or breaking of the free surface and no entrapment of air
bubble takes place for an inlet velocity of 0.84m/s. This phenomenon is also
observed in the experiment. A comparison of free surface with that of the
experimental snapshot reveals that the free surfacematcheswell with that of the
experiment in later time, barring the initial transience. The initial transience of
the free surface, taking place in the experiment, could not be simulated through
the present computation due to initial mismatch in the inlet and outlet flow rate
in the experiment, which is not known in advance. Had this been known then
simulation could have been done. However, the shape of the free surface in later
time qualitatively matches with that of the experimental observation very well.

Table III shows a comparison of the average maximum amplitude of the free
surface with that of the experiment for an inlet velocity of 0.84m/s.

High inlet velocity
The free surface simulations for an average inlet velocity of 2.0m/s were made
for three port angles; namely parallel port, 158 down and 158 upward port.
Figure 5 shows a sequential development of the free surface with time for a

First appearance of wave break from t ¼ 0 s

No. of CV 08 port No. of CV 158 down port No. of CV 158 up port

5,890 0.92 s 6,270 0.96 s 6,580 1.08 s
9,870 0.95 s 9,986 0.98 s 11,240 1.10 s Table II.
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Figure 4.
(A) Development of free
surface with time for a
parallel port SEN with an
inlet velocity of 0.84m/s;
(a) ¼ 1 s, (f) ¼ 6 s, with
an interval of 1 s
(B) Experimental
snapshot of the free
surface developed with a
parallel port SEN having
a port exit velocity of
0.84m/s (a) ¼ 1 s,
(f) ¼ 6 s, with an interval
of 1 s

(Continued)
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Figure 4.
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parallel port SEN. It can be observed from Figure 6 that the free surface is
overturning in nature and it entraps air bubble at the trough of the wave.
Figure 6(a) shows the shape of the free surface at t ¼ 0:6 s. The right hand side
of the figure is the narrow side wall located at x ¼ 250mm and the wave
amplitude can be read from the millimeter scale attached to this wall. The
location and the amplitude of the free surface can also be found out from
the horizontal scale attached at the top of the figure. The nozzle is located on the
left hand side of the figure. The fluid comes out of the nozzle from the left side
and proceeds as a jet to the right where it hits the narrow sidewall. There the
fluid branches into two streams. One stream goes up and the other goes down
creating two recirculation zones in the mold (Figure 10). The rising fluid carries
enough kinetic energy as a result it rises up near the wall and comes to a halt
because of the opposing gravity force acting on it in the downward direction.
The fluid elements away from the wall have low velocity and as a result they
move up to a lower height in the mold. This is the reason the free surface is
always higher near the wall and it falls in height as it moves inward. The fluid
elements on the free surface are always balanced by the viscous, surface
tension and the gravity forces. As the free surface becomes flatter near the
trough area the surface tension forces decrease (due to high radius of curvature)
so the surface tries to overturn and tries to come to a new equilibrium position
by turning more and enhancing the surface tension force again. But the gravity
force pulls the liquid element down and as a result the free surface undergoes
breaking and the breaking of the free surface entraps air bubble near the
trough.

This phenomenon can be observed very well in Figure 5(b) where the free
surface has broken and has entrapped an air bubble. The air bubble moves
downward because the surrounding fluid pushes it down (the fluid there have
downward velocity and also velocity directed towards the left wall or nozzle
side wall). As the bubble moves down the local pressure on it increases and as a
result it becomes smaller in size and due to the flow field it slowly moves
towards the left wall (Figure 5(b)-(g)). Then the air bubble sticks to the left wall
where it slowly moves up and collapses on the free surface. The bubble while
collapsing moves up and comes to the free surface where it finally escapes to
the ambient (Figure 5(h) and (i). In Figure 5(d), it can be seen that another wave
has broken and an air bubble is entrapped in the liquid. There are many such
breakings taking place in the free surface and each breaking entraps air bubble.

Parallel port (Amax in mm) 158 down port (Amax in mm)

Experiment 8 9
Computation 9 8

Note: Experiment for parallel and 158 downward port SEN with the present computation

Table III.
A comparison of
maximum wave
amplitude
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Figure 5.
Development of free

surface with time for a
parallel port SEN with an
inlet velocity of 2.0m/s

Mathematical
simulation of
surface wave

621



Figure 5.
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After the free surface has broken the maximum wave amplitude decreases
suddenly and slowly again the wave amplitude increases and again the free
surface breaks causing the maximum wave amplitude to decrease again. This
can be seen from Figure 6 where the maximum wave amplitude is plotted with
time for the parallel port SEN with an inlet velocity of 2.0m/s.

From Figure 6 it can be observed that the wave amplitude increases from
zero at t ¼ 0 to a high value of 72mm at t ¼ 0:95 s where it breaks causing the
amplitude to fall suddenly. In Figure 6, any sudden fall in amplitude of the
wave signifies a breaking of the free surface and has been marked by an arrow.
From Figure 6 it seems that the wave breaks randomly in time. But after a time
of 3 s the average maximum wave amplitude remains within a certain band. It
is visualized from Figures 5(a)-(m) and 6 that the free surface is continuously
changing because the distance between the crest and the trough is changing
with time. But the overall shape of the free surface (crest near the wall and a
trough around 136mm) looks alike although it is continuously changing with
time within this band. It should be noted that the location of the crest and
trough of the free surface changes with time. The location of the trough varies
between x ¼ 110 and 136mm and the crest between 12 and 16mm from the
narrow sidewall. The height of the crest from the undisturbed liquid level does
not vary much with time (after the initial transience) but the level of the trough
varies with time. This can be read from Figure 5(a)-(m) with the help of the
millimeter scale attached to the narrow sidewall.

The time when the free surface breaks can be read from Figure 6 and that
can be seen from Figure 5 also in terms of the entrapment of air bubble through
the free surface. In Figure 5(f), a bubble can be seen near the free surface and
that has come extremely close to the free surface (Figure 5(h)) and also closer to
the left wall and finally collapsed on the free surface (Figure 5(i)) leaving a dent
on the free surface. Figure 5(q) shows the shape of the free surface on the verge
of breaking and that has broken in the next instant (Figure 5(r)) entrapping a

Figure 6.
Variation of maximum
wave amplitude with

time for a parallel port
SEN (125mm depth),

arrow positions show the
breaking of a wave and
entrapment of air bubble
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big bubble. The former bubble and the newly formed bubble have coalesced to
form a bigger bubble which is unstable for which the bubble again broke into
two parts in the next instant (Figure 5(s)). Again in Figure 5(t), it can be
observed that the free surface is about to break. It can be expected that the
bubbles, which are already entrapped by the liquid (Figure 5(q)-(s)), will escape
through the free surface again by collapsing on it. Thus, Figure 5(a)-(t) shows
the development of free surface with time and the breaking of the free surface
with the entrapment of air bubble and movement of bubbles within the bulk of
the liquid either with fragmentation or coalescence.

Similarity with experiment
The phenomenon of wave breaking for a parallel port nozzle has been explained
above and it has been experimentally visualized by Gupta and Lahiri (1993). In
the present experimental set-up it was difficult to arrive at an inlet velocity of
more than 1.4m/s. So the present experimental set up could not be used to study
the bubble entrapment, which normally occurs at an inlet velocity of 2m/s or
more. For this reason we took the experiments of Gupta and Lahiri for a
qualitative comparison with bubble entrapment. Their experimental
investigation of the free surface has been numerically modeled in the present
work and the grids are shown in Figure 7. Their system did not have symmetry
(due to the placement of the outlet on one side of the wall) so we used a full scale
model to simulate the experiment. Figure 7 also shows the boundary conditions
used for the simulation and the geometrical details of their experimental setup.
They used a parallel port nozzle having a circular opening with an average port
exit velocity of 1.94m/s. In order to match the average port exit velocity we put
an inlet velocity of 3.0m/s at the inlet (in the numerical computation) which
gives an average port exit velocity of 1.94m/s. Equality of mass flow rate
cannot be taken into account in this simulation due to the adoption of a
two-dimensional computation. The location of the free surface is at 1,072mm
from the bottom of the mold, which gives 150mm submergence depth. The cells
around this zone are refined to a size of 2.5 £ 2.5mm in both x and y directions.

Figure 8 shows the computed shape of the free surface at an interval of 0.04 s
starting from a time of t ¼ 1:2 s. It can be seen from the figure that the wave is
about to break at t ¼ 1:32 s (Figure 8(d)) and at t ¼ 1:36 s it has broken and has
entrapped an air bubble. The location of the wave break can be read from the
horizontal scale while the amplitude can be read from the left hand side
millimeter scale. The width of the mold in the experiment of Gupta and Lahiri
is 300mm and this can be read from the horizontal scale placed at the top of
Figure 8. From Figure 9 the horizontal scale can be read from the snapshot
where each division represents 10mm (5 represents 50, 15 represents 150 and
likewise 25 represents 250mm). We have placed a vertical scale on the narrow
side-wall (away from the nozzle side) which will help to read the wave
amplitude.
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Figure 9 shows five frames (a-e) shot with an interval of 0.04 s just at the time of
entrapment of air bubble in the experiment ( but the exact time of entrapment is
not mentioned in the work of Gupta and Lahiri). It can be observed that frames
9(d) and (e) from the experimental snapshot match closely with that of the
frames 8(d) and (e) of the present computation. In frame “d” of Figures 8 and 9
the surface is about to break and about to entrap an air bubble at the trough of
the free surface and the air bubble is entrapped in the next moment, which is
shown in frame “e” of both experimental and numerical investigations. The air

Figure 7.
Computational domain
with grid arrangements

for the simulation of
experiment
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bubble is seen as a large white patch just close to the trough of the free surface
in frame “e” of Figure 9 and in Figure 8(e) it is seen to be a close contour having
mass fraction of 0.5.

They had observed entrapment of air bubble by the free surface near the
trough, which can be seen from the present computation of free surface also.
They report the free surface to be a transient one, as does the present
computation. The average maximum wave amplitude has been reported to be
28mm for their case while in the present computation we have done the
simulation only up to 2 s just to capture the entrapment of air bubble. So the
average wave amplitude of the present simulation cannot be compared with
their experiment because the average amplitude in the experiment has been

Figure 8.
Computed shape of the
free surface at an interval
of 0.04 s, starting
time ¼ 1.2 s, a
comparison with the
experimental
observation showing
bubble entrapment
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computed over a long interval of time when the initial transience has
completely died out. During the first 2 s of the computation, the wave amplitude
will remain high and that will slowly decrease to a smaller value with the free
surface randomly breaking and entrapping air bubbles the way it has been
shown in Figure 6. Computing the average wave amplitude over a long period
is extremely time-consuming for a numerical set-up for which effort has not

Figure 9.
Sequential photographs
of the free surface at an
interval of 0.04 s for a

parallel port SEN with a
port exit velocity of
1.94m/s (Gupta and

Lahiri)
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been given in that direction. However, looking at the location of the trough of
the free surface and the place of bubble entrapment, it seems that the present
computation is able to give the right trend in predicting the overall shape and
entrapment of air bubble through a free surface.

Velocity field around the free surface
Figure 10 shows the velocity field around the free surface and the nozzle exit in
the numerical simulation done for the experiment of Gupta and Lahiri.
Figure 10(a) shows the flow field at t ¼ 1:2 s along with the free surface
described in it (this can be seen as a solid line in Figure 10(a), the horizontal
solid line represents the initial liquid level). Figure 10(b) shows the free surface
when it is just about to overturn and capture a bubble. It can be seen from
Figure 10(a) and (b) that at the location of the trough there is a recirculating
fluid packet just formed prior to the entrapment of an air bubble. Just after a
while when the bubble is entrapped (in Figure 10(c), the free surface and the
bubble can be seen), the recirculation disappears in the air side and the free
surface pushes out the surrounding air to its right and the bubble is also
pushed towards the nozzle due to the local convection present in the heavier
fluid. This way the bubble travels little down into the heavier fluid and then it
comes closer to the nozzle wall where it moves up to the free surface again and
collapses on it. It must be marked from the figure that no bubble can travel to
the left or towards the narrow side wall rather they are helped, because of the
local flow field, to travel towards the nozzle and rise upward to the free surface
again where they can collapse.

Grid independent free surface
In the present computation we have used a cell size of 1.85 £ 1.85mm near the
free surface (Figure 5) to capture the free surface very sharp where we have
studied the entrapment of bubbles along with its fragmentation and
coalescence. In the numerical simulation done for the experiment of Gupta
and Lahiri we have used two kinds of cell size, a coarser one with a size of
2.5 £ 2.5mm along with a finer one having a size of 1.25 £ 1.25mm to find out
the effect of cell size on the free surface and bubble entrapment. It can be seen
from Figure 11 that there is not much difference between the two free surfaces
computed by the coarse and the fine cell at t ¼ 1:2 s. Again at t ¼ 1:36 s, a
comparison between the coarse and the fine cell, in predicting the free surface
along with an entrapment of the air bubble, can be seen from Figure 11(b).
From the study of Figure 11, it can be concluded that a cell size of 2.5 £ 2.5mm
near the free surface is well capable of predicting the free surface and bubble
entrapment accurately when the inlet velocity is limited to about 3m/s.

Conclusions
The numerical solution of the Navier-Stokes equations along with the mass
and volume fraction conservation equations for both air and water has
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Figure 10.
Velocity field in the mold
showing the free surface,

(a) t ¼ 1.2 s wave is
about to be created,

(b) t ¼ 1.32 s, wave is
about to break

(c) t ¼ 1.36 s, just after
the entrapment of an air

bubble
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been shown to provide results for water flows in parallel and inclined port
nozzles of a SEN fitted to a mold, which agree both qualitatively and to a
large extent also quantitatively with experimental observations. It can be
concluded that the free surface is transient in nature and never attains
perfect steady state. The breaking of the free surface occurs randomly but
the shape does not change very significantly after some time leaving the
initial transience. The maximum wave amplitude of the free surface
remains high at the start up and then gets fixed to a certain band within
which it varies all the time. The present computation is able to predict the
entrapment of air bubble and its subsequent fragmentation or coalescence
within the mold, which has been also experimentally verified. It can also be
concluded that a two-dimensional simulation for this purpose is good
enough as far as the measurement of the maximum wave amplitude and

Figure 11.
Shape of the free surface
at (a) t ¼ 1.2 s,
(b) t ¼ 1.36 s and a
comparison of the shape
after making the cell size
half in both x and y
directions, (1) Cell
size ¼ 2.5 £ 2.5mm,
(2) cell
size ¼ 1.25 £ 1.25mm
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entrapment of air is concerned. However, if it is desired to observe the
development of vortices on a free surface then a three-dimensional
computation has to be undertaken at the expense of time.
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